B737 AC motor pump upgrade

Paul Harty

Product sales manager Fuel and motion control division

© 2016 Eaton. All Rights Reserved.

Agenda

- History of new 737 containment requirements
 - Review of Boeing model record
 - Recent fleet containment events
- Overview of Eaton 737 ACMP upgrade
 - Upgrade configuration
 - Benefits
 - Current status
 - Schedule

Issue/application

- B737 classic through max
- AC motor-pump overheat failure possible
- Current motor design does not adequately contain 2 phase electrical failure
- Model MPEV3-056-7A / PN 887477
 - Boeing PN 10-60556-32
- Pump overheat / stator failure

Eaton product evolution

- The Eaton motor electrical configuration has remained the same throughout the history of the 737 fleet
 - Originally introduced as part of 10-60556-1
- 10-60556-32 (added in 1990) is a derivative of earlier models featuring product improvements to the hydraulic pump
 - The 10-60556 SCD requirements for the Eaton models do not reflect the electrical containment requirements developed for the -10, -12, and -20 configurations

Stator electrical failures resulting in penetration of the ACMP housing are not recorded in the Eaton repair history records

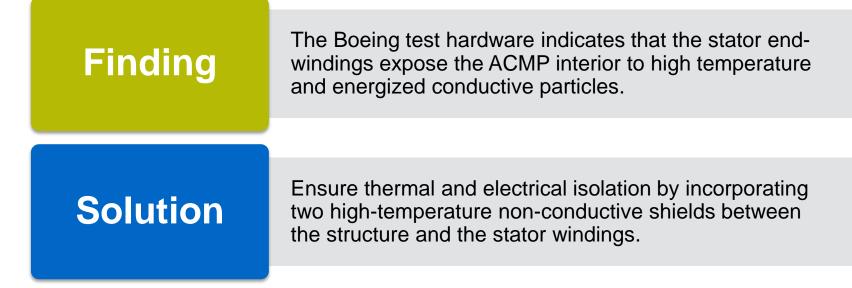
Recent failure containment history

- In 2014, an Eaton unit on a 777 aircraft experienced an aircraft-induced two-phase electrical event
 - The loss of a single phase significantly increases overheating within a motor and simultaneously reduces the cooling available to the motor
- Boeing and Eaton investigated the 777 unit
 - Damage occurred to the stator
 - No external surface damage or burn through was noted

Boeing two-phase validation testing

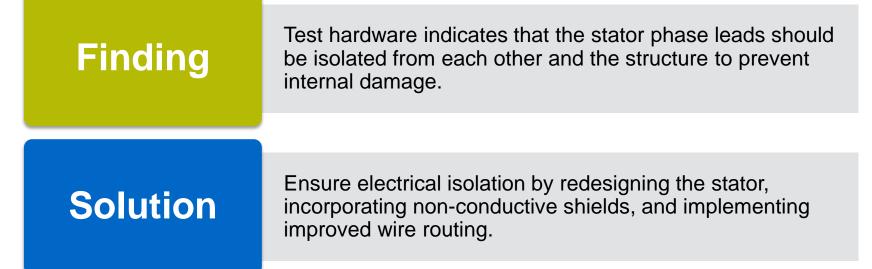
- Eaton understands that as a result of the 777 event, the FAA has elected to deny qualification-by-similarity for electrical motor failure containment requirements for new aircraft certification
 - This decision impacts the 777x and 737MAX
- Boeing executed a series of validation tests for 737MAX ACMP configurations
 - During the two-phase test, the 10-60556-32 configuration failed to contain the internal failure

Eaton has identified the source of the containment failure by evaluating the test results and hardware



Boeing new 737 ACMP requirement

- Boeing issued a RFP for a compliant derivative ACMP Oct-14
 - Must operate under specified conditions without
 - Exceeding surface temperature limits
 - Allowing penetration of an external surface
- Eaton submitted a proposal for a compliant derivative ACMP Jan-15
- Boeing submitted desist letter to Eaton Mar-15
- Boeing and Eaton initiated the program for a compliant derivative ACMP May-15



Solution: stator end-turn shielding

Solution: electrical isolation

Solution: phase lead supports

Test hardware indicates that the leads should be supported to prevent post-damage contact with conductive surfaces.

Solution

Ensure isolation after the phase lead is severed from the stator end-windings by incorporating wiring supports into the non-conductive shield.

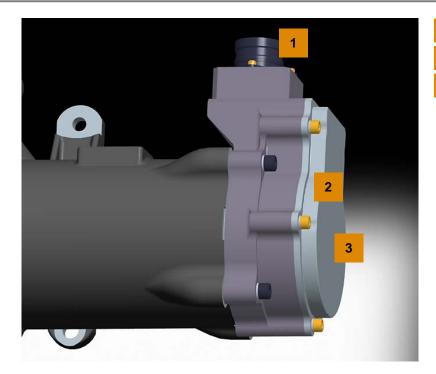
Solution

Introduce a new AC motor pump that meets 2 and 3 phase failure containment requirements

- Introduce new model MPEV3-056-7B / PN 3033096-100
- New design has been validated and tested:
 - Locked rotor tests
 - Two phase power tests

2 phase test validation

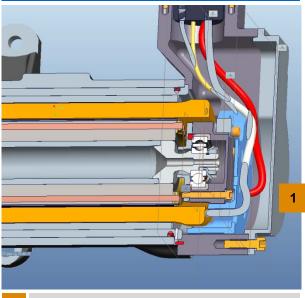
Design validation test completed to date


- Numerous performance calibration checks completed
- Thermal mapping of key motor components
- Eighteen 2 Phase tests successfully completed
- Twenty-four -65°F cold starts demonstrating peak inrush current behavior
- Fifty Thousands start / stop cycles completed

Development test continue through the development phase

- Endurance testing
- Vibration
- Complete 100,000 start / stop cycles

Envelope exterior



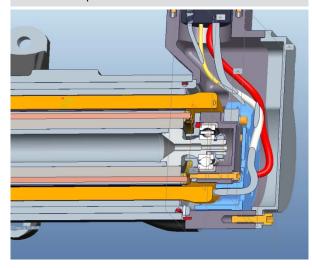
I	Aircraft connections identical
2	New machined cover and end bell
}	New envelope validated by Boeing

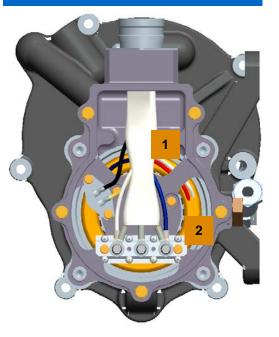
End-turn shielding

Upgraded configuration

New insulator providing end turn shielding

Incumbent configuration

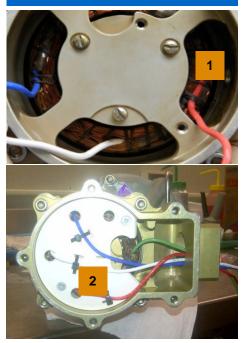

No shielding in the incumbent configuration


2 phase test validation

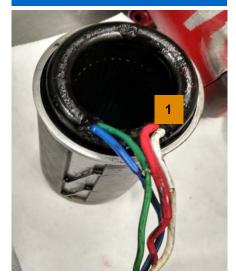
Configuration updates

Validation of the design with separation of lead wires has demonstrated inconsistency (pass/fail) during 2 phase testing. Time to failure is too large and the external temperature exceeds the limit of 392°F

Latest configuration


Incorporation of "Fuse Link" device that provides protection to the motor by failing to an open circuit during extended high current (90 amps ~60 seconds) events

2 Terminal strip – provides connection between stator leads and "Fuse Link"


Electrical isolation and phase lead support

Upgraded configuration

- 90 deg. phase lead separation
- 2 New Insulator providing phase lead isolation and support

Incumbent configuration

No phase lead spacing, isolation, or support

Upgraded configuration benefits

- The upgraded configuration will meet all certification requirements for the 737 MAX application and retroactive requirements for the 737NG and C applications
 - The upgraded configuration will robustly contain both three and two phase motor failure events
- The upgraded configuration will remain point-to-point compatible with all 737 applications

Upgraded configuration benefits

- The upgraded configuration as demonstrated to operate cooler due to an improved motor cooling jacket
 - This improvement will eliminate the hydraulic bypassing of the 10-60556-32 configuration
 - The cooling jacket will enhance the ability of the unit to self-purge air from the cooling circuit
- The upgraded configuration will relocate the thermal switch to better track the stator temperature for higher reliability



Implementation

New Model will be Available in the 3rd quarter 2016

- Will be added to 737Max selection catalog April 2016
- New Model will become the standard for new build 737NG and Max configurations
- 737CL and 737NG pumps upgrade kits will be available 3rd quarter 2016
 - Service bulletin will be released in parallel with Model release
- Attractive Flat rate upgrade, parts kits, and retrofit programs available

Powering Business Worldwide