### Hydraulic pumps 201

### John Schuerman Product Support Manager FMC Jackson, MS



© 2016 Eaton. All Rights Reserved.

## Agenda

- Introduction
- Inline pump characteristics
- Basic inline pump operation
- Pump demonstration video
- Pump functional groups & problems
- Questions



## Introduction

- This discussion will acquaint participants with the inner-workings of the Eaton hydraulic inline pump
- Additionally we will look at the various functions and potential problem areas within the pump



## Eaton inline pump characteristics

- An inline pump refers to the orientation of the pistons relative to the primary axis of rotation
  - All Eaton inline pumps are of the positive displacement type
- A positive displacement pump always discharges a specified volume of fluid except for internal losses regardless of the developed pressure except when limited by available torque





## **Basic inline pump operation**

### **Operation**

- The drive shaft is driven by the coupling shaft through the interface with the gearbox
- The cylinder block is driven by the interfacing drive shaft spline
- The pistons are driven by the cylinder block bores
- The piston reciprocation within the bore is caused through interaction between the piston & shoe subassembly and the max stroked yoke subassembly





## **Basic inline pump operation**

### **Operation (cont.)**

- The piston reciprocation within the bore causes fluid to be drawn into the bore from the inlet port and forced to the outlet port
- As pressure is built in the outlet circuit it is sensed by the compensator and pressure is routed to the actuator piston
- The actuator piston de-strokes the yoke against the yoke spring to reduce flow





## Pump operation - drive shaft and bearing

### **Drive shaft**

 A simple, single-piece design held in accurate alignment by two anti-friction bearings

### **Spline**

 Drives the cylinder block through a major diameter fit, crowned slightly to provide cylinder block self-alignment

### **Bearings**

 Located at each end of the shaft allowing for significantly minimized bearing size





## Pump operation - intake stroke

### Intake

- During the first half of a rotation, each piston shoe sub-assembly follows the yoke angle away from the valve plate
  - Causing the piston to be withdrawn from the cylinder block
  - Supplying fluid to the cylinder block bore through the valve plate inlet port
- Further rotation seals the captured fluid within the piston and cylinder block bore





## Pump operation - discharge stroke

### **Discharge stroke**

- During the second half of a rotation, each piston shoe sub-assembly inserted into the cylinder block bore
  - Forcing hydraulic fluid from the cylinder block bore through the valve plate and into the high pressure outlet circuit





## Pump operation - variable displacement

### Yoke angle and displacement

- The angle of the yoke determines the displacement
  - At full flow, the yoke angle is maximized allowing for the full extension of the piston into the cylinder block
    - At near zero flow, the angle of the yoke is minimized, resulting in no displacement of the piston or flow from the pump
      - Internal and quiescent leakage cause a minimum amount of flow to always be present





## Pump operation - yoke subassembly

### Shoe bearing plate

 Allows accurate lapping of the bearing surface and optimum wear material selection

### Piston shoe hold-down plate

- Also Known as "Dial Plate" or "Shoe Retainer Plate"
- Guides Piston Shoe position through pump rotation
- Used to establish Shoe running clearance
- Supplies force during the Piston extraction out of the cylinder block bore





## Pump operation - yoke subassembly

### Shoe hold-down plate retainer

- Provides positive retention of the shoe hold-down plate during the intake stroke
- This retainer is secured to the yoke by screws
- Retainer design and arrangement improve the high-speed capability of the pump





## Pump operation - shaft seal assembly

### **Seal operation**

- Element
  - Made of high quality bearing grade bronzes or carbon
  - Rotates with the shaft driven by the two retainer tabs
- Mating Ring
  - Made of high quality steels and remains stationary in the housing
  - Sealed at outer diameter by O-ring





## Pressure control - flat cut-off compensator

### Flat cut-off type

- Provides nearly constant flow through the entire pressure range
  - Limits the system pressure increase to about 3% from full flow to zero flow





## EDV valve and blocking valve

### **Normal operation**

- The solenoid valve is de-energized
- The blocking valve is maintained in the open position
- The pump pressure compensator operates normally to provide full outlet pressure





### **Basic pump operations**

# Insert pump animation



## **Functional groups**

We will discuss the basic functions and their failure modes. These functional groups include:

- Fluid containment
- Cooling, lubrication and cleansing
- Pumping (Flow generation)
- Control (Pressure regulation)



## Functional group shop findings

#### P/N 623977/887673 PV3-240-10/10C (EDP) Repair findings (By Qty.) (A318/A319/A320/A321/B747/B757/B767/MD-11/DC-10)





## **Functional groups**

- Fluid containment
- Cooling/cleansing
- O Pumping (flow)
- O Controls (pressure)





## Fluid containment functional group

Maintains the hydraulic fluid within the body of the pump and prevents external fluid leakage.





## Fluid containment functional group

### Loss of fluid containment

- Shaft seal leakage
- Parting line leakage
- Fitting leakage
- External plug leakage
- Leaks at sensing screws
- Structural failure





## Cooling/cleansing functional group

Fluid flow through the case provides fluid for cooling, lubricating and cleansing. The case pressure also provides the reference for the compensator.





## Cooling/cleansing functional group

### **Restriction indications**

- Overheating
- Contamination wear
- High outlet pressure





## Pumping functional group

This is the group of rotating components that convert the rotary mechanical power into hydrostatic hydraulic power.





## Pumping functional group

### Wear indications

- Low outlet flow
- High case flow
- Low case pressure
- Noisy operation
- Cavitation
- Temperature increases
- Contamination to filters





## **Controls functional group**

This group of components senses the outlet pressure and adjusts the pumping components as necessary to meet the system flow demands.





## Controls functional group

#### Wear indications

- Low/high outlet pressure
- Pulsating outlet pressure
- Fail to depressurize
- Noisy operation
- Pressure Overshoot
- Stability
- Blocking valve leakage
- High case pressure
- Cavitation case leakage
- Spring guide low delivery











### Powering Business Worldwide

www.eaton.com/aerospace